变频电源

变频电源是将市电中的交流电经过AC→DC→AC变换, 输出为纯净的正弦波,输出频率和电压 一定范围内可调。它有别于用于电机调速用的变频调速控制器,也有别于普通交流稳压电源。理想的交流电源的特点是频率稳定、电压稳定、内阻等于零、电压波形为纯正弦波(无失真)。变频电源十分接近于理想交流电源,因此,先进发达国家越来越多地将变频电源用作标准供电电源,以便为用电器提供最优良的供电环境,便于客观考核用电器的技术性能。 变频电源主要有二大种类:线性放大型和SPWM开关型。

变频电源
编辑
锁定
讨论
上传视频
特型编辑
电源类型
相关视频查看全部
发展历程
变频电源是在国内一般的称呼,更准确的说,应该叫交流电力频率转换器,即Ac power Frequency Converter,一般用缩写AFC来称呼。变频电源的整个发展史基本是随着电子器件的发展而发展的。
80年代前后,电子式变频电源多以日本的小型仪器电源为主,该类仪器电源多采用晶体放大的方式制作,80年代后通过台湾传入中国大陆。该时期的电源特点为:功率小,精度好,效率低。
80年代,中国大陆走上了改革开放的道路,在此阶段,中国大陆的进出口设备逐渐加大,尤其以微波炉及空调为代表性的电器出口份额增加,因此需求大功率变频电源进行测试。对于该部分市场应用的需求,原有的产品功率已不能满足,所以,电源厂家寻求新的技术来扩大电源的功率。根据当时的技术条件及电子器件,主要向两条路发展,一方面是保持晶体式的方式不变,采用多机并联的方式进行扩容;另一种方式是采用功率晶体模组。
晶体式多级串联的方式,需要解决环流问题,而且效率低,在工业生产过程中,消耗太大;功率晶体模组变频方式反应慢,功率有限,工作电压低,耐压在600V左右,输出采用PAM滤波方式(为单方波加低次滤波),输出波形失真较大。这两种方式制作的电源产品功率依旧不能满足日益增长的需求,所以大功率的负载需要变频测试时,多采用电机后拖动发电机的方式(M+G)来满足。
电机后拖动发电机的方式(M+G)在使用过程中,存在磨损,以及效率转换问题。后来参考美国技术,采用SCR来做逆变器,该方式制作的电源,功率大,能满足客户使用,比较好的用于取代电机后拖动发电机的方式(M+G),但是该系列的产品有一个较大的缺点,机器在转换的过程中,噪音非常大,达到70dB<1m
随着半导体技术的发展,在80年代末,富士生产出了第一代的IGBT,该电子器件的特性集成了GTR及MOSFET的优点,开关速度快,通流能力强,故很快就被应用到逆变领域。随着实力强大的三菱、西门康、英飞凌等厂家在IGBT领域的加入,使得IGBT的发展速度日新月异,更新换代的速度加快,IGBT的开关速度及通流能力得到进一步的加强,这样,就使得大功率的变频电源的制作得以实现。
与变频器的区别
变频电源是由整个电路构成交流一直流一交流一滤波的变频装置,得到了广泛应用。变频电源不仅能 模拟输出不同国家的电网指标,而且也为出口电器厂商在设计开发、生产、检测等应用中提供纯净可靠的、低谐波失真的、高稳定的电压和频率的正弦波电源输出。变频电源是非常接近于理想的交流电源,可以输出任何国家的电网电压和频率。变频器是由交流一直流一交流(调制波)等电路构成的,变频器的标准名称应为变频调速器。其输出电压的波形为脉冲方波,且谐波成分多,电压和频率同时按比例变化,不可分别调整,不符合交流电源的要求。
售后
变频电源:厂家自己研发生产,对电源非常熟悉,一旦出现问题,会在电源现场以最短的时间解决问题。
变频器:因变频器多是从其他专门生产变频器的厂家购买,一旦出现问题,电源厂家会把变频器拆下寄回变频器厂家(部分在国外),维修周期长,而且变频器厂家不会负责变频器与变压器和LC低通滤波电路的匹配。即使现场维修也很难保证彻底解决问题
可靠性
变频电源:电源整体统筹设计,经过多年的技术积累,保证电源稳定可靠运行。
变频器:通过变频器组装的岸电电源生产较为简单,因其主要部分“变频器”为购买,所以很难保证变频器与其他元件的参数相匹配
安全性
变频电源:启动过程中频率恒定。岸电电源可以提供纯净可靠、低谐波失真、高稳定的电压和频率的正弦波电力输出,非常接近于理想的交流电源。
变频器:变频器的设计专门针对电动机变频启动,启动时电压、频率同步上升,用其改装的电源,可能会对用电设备造成影响,尤其是变频器、可控整流、通信设备等。
三相不平衡
变频电源:逆变部分采用星型方式,每相可独立带载,适应三相完全不平衡负载。不平衡度可达3%以内。
变频器:变频器采用△逆变,虽然输出通过变压器转变成Y型输出,但对三相不平衡负载适应性较差,可能会使电动机中逆扭矩增加,使电动机温度上升,效率下降,能耗增加,发生震动,输出亏耗。
最新技术
当今国际上先进的变频电源是采用IGBT逆变输出技术,用先进微处理器控制设计而成的高性能精密电源,它具有过流、短路、过压、欠压、过载等保护及报警故障显示功能,确保用电设备及变频电源安全。具有负载适应性强,输出波形品质好,良好的人机界面,操作简单,体积小,重量轻等特点。正弦波输出,可调输出电压及频率的变频电源为用电设备提供了所需要的交流电。
技术特点
提供世界各国标准电源、稳定纯净正弦波,模拟测试各种电器产品
16位微控制器(模拟)控制,输出电压、频率智能(模拟)控制,操作灵活方便
高频PWM设计,以IGBT做功率推动,体积小,噪音低
独特的瞬时值控制方式,可预先设定标称电压-10%~-30%及+10%~+25%,控制精度高,波形品质好,可适应各种负载
效率高达85%以上,适用负载广,负载功率因数±0.5~1.0均可
暂态反应快速,对100%的加载或去载,稳压反应时间在2ms以内
过载能力强,瞬间电源能承受额定电流300%
具过高电流、超载、超温等多重保护及告警
电压(V)、电流(A)、频率(HZ)、功率(W)、功率因数(PF)全部由LED数码管显示,简单易读,高解析度
输出电压0~150V/0~300V两档可调
输出频率45HZ~65HZ、50HZ、60HZ、2F、4F、400HZ
低失真干扰,输入/输出完全隔离,安全可靠
适用范围广,可广泛用于需变频变压场所
单相500VA~500KVA,三相3KVA~1600KVA,可承接特殊规格定制
应用领域
由于世界各国电网指标不统一,出口电器厂商需要电源模拟不同国家的电网状况,为工程师在设计开发、生产线测试及品保的产品检测、寿命、过高压/低压模拟测试等应用中提供纯净可靠的、低谐波失真、高稳定的频率和稳压率的正弦波电力输出;进口原装电器、设备的用户也需要对我国电网进行变压、变频以保证进口电器、设备的正常运转;满足航空电子及军事设备高频的需求。
主要用于制造或出口贸易商对出口电器产品的用电检测、调试及用于精密仪器的供电电源。广泛适用于家电制造业、电机、电子制造业、IT产业、电脑设备、实验室等。
★ 家电业制造商如:空调设备、咖啡机、洗衣机、榨汁机、微波炉、收录音机、冰箱、DVD、吸尘器、电动剃须刀等产品的测试电源。
★ 电机、电子业制造商如:交换式电源供应器、变压器、电子安定器、AC风扇、不断电系统、充电器、继电器、压缩机、马达、被动元件等产品的测试电源。
★ IT产业及电脑设备制造商如:传真机、影印机、碎纸机、印表机、扫描器、烧录机、伺服器、显示器等产品的测试电源。
★ 实验室及测试单位如:交流电源测试、产品寿命及安全测试、电磁相容测试、OQC(FQC)测试、产品测试及研发、研究单位最佳交流电源。
★ 航空/军事单位如:机场地面设施、船舶、航天、军事研究所等的测试电源。
采用变频电源稳压器调速,一是根据要求调速用,二是节能。它主要基于下面几个因素:
1) 变频调速系统自身损耗小,工作效率高。
2) 电机总是保持在低转差率运行状态,减小转子损耗。
3) 可实现软启、制动功能,减小启动电流冲击。
在采用变频电源调速时,需从工艺要求、节约效益、投资回收期等各方面考虑。如果仅从工艺要求、节约效益考虑,下面几种情况选用变频调速较有利:
F根据工艺要求,生产线或单台设备需要按程序或按要求调整电机速度的。如:包装机传送系统,根据不同品种的产品,需要改变系统传送速度,使用变频调速可使调速控制系统结构简单,控制准确,并易于实现程序控制。
F用变频调速代替机械变速。如:机床,不仅可以省去复杂的齿轮变速箱,还能提高精度、满足程序控制要求。
F用变频调速代替用闸门或挡板调整流量,适于风机、水泵、压缩机等。例如:锅炉上水泵、鼓风机、引风机实行了变频调速控制,不仅省去了伺服放大器、电动操作器、电动执行器和给水阀门(或挡风板),而且使得整个锅炉控制系统得到了快速的动态响应、高的控制精度和稳定性。
20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。
1. 交流变频调速的优异特性
1) 调速时平滑性好,效率高。低速时,特性静关率较高,相对稳定性好。
2) 调速范围较大,精度高。
3) 起动电流低,对系统及电网无冲击,节电效果明显。
4) 变频电源体积小,便于安装、调试、维修简便。
5) 易于实现过程自动化。
6) 必须有专用的变频电源|稳压器,造价较高。
7) 在恒转矩调速时,低速段电动机的过载能力大为降低。
2. 与其它调速方法的比较
交流电动机的调速方法有三种:变极调速、改变转差率调速和变频调速。其中,变频调速最具优势。这里仅就交流变频调速系统与直流调速系统做一比较。
交流拖动本身存在可以挖掘的节电潜力。在交流调速系统中,选用电机时往往留有一定余量,电机又不总是在最大负荷情况下运行;如果利用变频电源调速技术,轻载时,通过对电机转速进行控制,就能达到节电的目的。工业上大量使用风机、水泵、压缩机等,其用电量约占工业用电量的50%;如果采用变频电源调速技术,既可大大提高其效率,又可减少10%的电能消耗。
种类
变频电源装置主要分为交—直—交变频和交—交变频两大类,交—直—交变频又可分为电压型和电流型两大类,交—交变频多为电压型,也有少量使用电流型。
变频电源控制方式分为电压型、电流型、脉冲宽度调制型等。其主回路的拓扑、控制策略都有多种方式可以选择,如功率器件有scr(晶闸管,thyristor)、gto(门极关断晶闸管,gateturn-offthyristor)、igbt(绝缘栅双极晶体管,insulated-gatebipolartransistor)、igct(集成门极换流晶闸管,integratedgatecommutatedthyristor,是一种新型半导体功率器件,在gto的基础发展起来的)等;主回路的拓扑结构可选择两电平、三电平、负载换相式scr电流型变频器等,控制策略可选择v/f控制、矢量控制、直接转矩控制、脉冲宽度调制(pwm)或脉冲幅度调制(pam)等;电压也有高压(3~6kv,主要是大容量的同步或异步电动机)、中压或抵压(如一般的小功率380v和轧钢辅传动的电动机)等。此外,变频调速还有变极调速,无级调速还有矢量控制方式、变压变频(vvvf)控制方式等,价格极为不同,如何选择是一大问题。表3示出了我国宝钢从日本引进的于1989年投产的1900mm板坯连铸全交流方式。从表中可以看出,变频调速采用变极、vvvf和矢量变换控制三种方式,在调速要求不需无级的只须有限变速的采用变极控制方式,要求速度控制不严格的如辊道速度控制采用变压变频(vvvf)方式,要求速度控制严格的才采用矢量变换控制方式,这样目的是节约投资和简化维护,这种按工艺要求选择变频器的方法可作为为其他车间交流化作为准则,如烧结的全交流化,其配料的变频电源采用vvvf方式,台车采用矢量变换控制方式。
定期保养
清扫空气过滤器冷却风道及内部灰尘。检查螺丝钉、螺栓以及即插件等是否松动,输入输出电抗器的对地及相间电阻是否有短路现象,正常应大于几十兆欧。导体及绝缘体要及时用酒精擦试干净。如条件允许的情况下,要用示波器测量开关电源输出各路电压的平稳性,如:5V、12V、15V、24V等电压。测量驱动电路各路波形的方波是否有畸变。UVW相间波形是否为正弦波。
接触器的触点是否有打火痕迹,严重的要跟换同型号或大于原容量的新品;确认控制电压的正确性,进行顺序保护动作试验;确认保护显示回路无异常;确认变频电源在单独运行时输出电压的平衡度。
建议定期检查,应一年进行一次。
变频电源备件的更换
变频电源由多种部件组成,其中一些部件经长期工作后其性能会逐渐降低、老化,这也是变频器发生故障的主要原因,为了保证设备长期的正常运转,下列器件应定期更换:
1.滤波电容
中间电路滤波电容:又称电解电容,其主要作用就是平滑直流电压,吸收直流中的低频谐波,它的连续工作产生的热量加上变频电源本身产生的热量都会加快其电解液的干涸,直接影响其容量的大小。正常情况下电容的使用寿命为5年。建议每年定期检查电容容量一次,一般其容量减少20%以上应更换。
2.冷却风扇
变频电源的功率模块是发热最严重的器件,其连续工作所产生的热量必须要及时排出,一般风扇的寿命大约为10Kh—40Kh。按变频电源连续运行折算为2—3年就要更换一次风扇,直接冷却风扇有二线和三线之分,二线风扇其中一线为正极,另一线为负极,更换时不要接错;三线风扇除了正、负极外还有一根检测线,更换时千万注意,否则会引起变频电源过热报警。交流风扇一般为220V、380V之分,更换时电压等级不要搞错。
生产
简述
对于变频电源生产,国外电气公司都已产业化了,如德国西门子、法国阿尔斯通、瑞典abb、美国ge、意大利ansoldo、日本日立、日本三菱、日本安川等公司都生产各种容量、不同电压的通用变频器可供选用,选择时可适当参照其业绩及在类似或同样机组使用情况和经验与效果。变频所用电动机也需注意,一般1000kw以下的电动机,采用异步电动机性能价格比较好,对于容量较大的可采用同步电动机或异步电动机。异步电动机一般采用线绕电机,而容量较小的电动机一般采用鼠笼电机。由于传动控制系统一般采用pwm变频器,故电机也须特殊设计,以满足pwm变频调速的要求(按不同机组情况,包括允许过载%、过载时间、工作制、绝缘等级、保护等级、额定电压等)。一般来说,还须考虑电源污染对电网造成的影响问题,特别对容量特大并使用交—交变频电源的场合,考虑装设无功动态补偿装置(svc)是要认真考虑的。?1996年推出的GH Bladed 是风机设计和分析行业的标准软件包。GH T-MON是测量风机结构载荷和
集成硬软件
1998年,公司推出风电场设计和分析软件工具GH WindFarmer, 被世界各国广泛采用。GH SCADA已成为业界领先的独立风电场管理、信息和报表工具软件。2003年推出的GH Forecaster服务,提供风力发电场发电量的短期预报。可带负载种类及容量选择方时最好先了解您将要使用的负载性质,现见到的有五种负载形式: 1 、阻性负载,2、感性负载3 、容性负载:4 、整流性负载;5 、混合型负载;6 、电能可反馈负载。顾客在选择电源时要根据负载性质的不同选择不同的电源容量。(二)变频电源容量选择变频电源对一般负载类型无特殊要求,可适应阻、感性、容性、整流以及混合负载。样本给出的技术参数是在额定状态、阻性负载条件下测试的,在额定条件下,电源可长期运行。但考虑到电网电压的波动、负载电流波峰系数、短时过载等因素,选择电源容量时,应留有适当裕量,建议如下:(1 )阻性负载: 电源容量 =1.1×负载功率(2 )阻感或阻容负载: 电源容量 =1.1× 负载视在功率(3 )电机负载: 电机负载直接起动时,起动冲击电流约为额定电流的5 一7 倍,起动时间一般在2秒之内。本系列电源2秒过载能力为2 倍,超出此范围,电源将过载保护。因此,考虑到起动容量,建议:直接起动的电机类负载,电源容量应为电机功率的3 倍。否则就采取软起动措施,或定货时特别说明。(4 )整流负载: 其输入回路包含整流二极管(或晶闸管)和滤波电容器,如果输入回路无软起动装置,则在输入开关合闸瞬间,负载可视为短路,将产生很大的冲击电流,导致电源过流保护。如果经常出现大的起动冲击电流,对负载回路也将造成不利影响,因此,建议:用户的整流负载输入回路应采用软起动措施,对起动电流进行限制。本系列电源过流保护阀值约为额定值的4 一5 倍,承受时间约为IO毫秒,在此范围内的冲击电流,电源均可承受。由于整流负载电流为脉冲电流,电流波峰系数可达3 -3.5 倍,因此对电源输出电压波形和长期运行出力均有一定影响,影响程度由负载电流波峰系数决定,通常,当负载电流波峰系数>2 时,电源容量按下式选择: 电源容量选择方法1. 阻性: 电源容量 = 1.1×负载功率 负载启动电流2. 感性: 电源容量 = ────────── ×负载功率负载额定电流负载电流波峰系数 3. 整流: 电源容量 = ────────── ×负载功率 1.5
4. 混合型:请按照不同负载所占比例适当选取
注:对于冰箱、空调之类的感性负载,应按照启动功率来选择电源容量。
如果整流负载与其它对电压波形要求较高的负载混用,则电源裕量还应在上述基础上加大。
(5 )混合负载请按照不同负载所占比例综合选取
(6 )电能可反馈负载,如可逆转电机、调速电机负载,本公司生产的系列电源需要加特殊装置,当可逆转电机在突然变换方向时,因内部会产生较大的反向电动势,形成反向电动势极易损坏电源,电机内择电源时,电源应具备泄放回路装置,订货时顾客必须特别予以说明。
. 电源电压,电源频率
除了一部分产品之外,电源电压和电压频率在产品出厂时为AC220V 、40HZ-70 HZ:如果需要改变为所使用地区的电源电压或特殊使用要求,请在订货时指定。
.外形尺寸· 重量
外形尺寸的表示方式以长度、宽度、高度为顺序,以毫米为单位。重量为其近似值。但是,手柄、旋钮、橡胶垫脚等突起物不包括在内。
国家标准
GB/T 4793.1 测量、控制和试验室用电气设备的安全要求 第1部分:通用要求
GB/T 6833.9-87 电子测量仪器电磁兼容性试验规范 传导干扰试验
GB/T 6587.2-86 电子测量仪器温度试验
GB/T 6587.3-86 电子测量仪器湿度试验
GB/T 6587.4-86 电子测量仪器振动试验
GB/T 6587.5-86 电子测量仪器冲击试验
GB/T 6587.6-86 电子测量仪器运输试验
GB/T 6587.7-86 电子测量仪器基本安全试验
GB/T 6587.8-86 电子测量仪器电源频率与电压试验
GB/T 6592-1996 电工和电子测量设备性能表示
GB/T 6593-1996 电子测量仪器质量检验规则
GB/T 11463-89 电子测量仪器可靠性试验
GB/T 13384-92 机电产品包装通用技术条件
GB/T 16511-1996 电气和电子测量设备随机文件
GB/T 17626.5-1999 电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验
GB/T 17626.11-1999 电磁兼容 试验和测量技术 电压暂降、短时中断和电压变化抗扰度试验
使用注意事项
1、高压试验请注意安全,严格按照高压试验的规范来操作。检查/修改试验接线时,请先关闭本系统,并切断电源。
2、本系统支持的最高电压为800Kv,实际能够升到的高压由激励变压器决定,请根据试验电压调换合适的激励变压器。
3、如果开机后发现变压器发出非正常声音,请立即关闭本系统并切断电源,检查变压器接线是否正确。
4、正常“停机”采用逐步降压停机的方式,保护停机直接快速停机,遇到紧急情况可以直接断开空开直接关机。
5、如果自动扫频失败,请检查接线或重设扫频范围。
6、本系统试验电压为峰值采样(国标要求),如果系统显示的高压跟万用表显示的高压差别大,请检查“试验参数”中的“分压变比”是否正确填写。
技术参数
10KVA变频电源技术参数
型号
10kVA
电路方式
IGBT/PWM脉波宽度调变方式
交流输入
相位
三相
电压
220V/380V±10%
频率
50Hz
交流输出
相数
单相
电压
低档
0-150V连续可调
高档
0-300V连续可调
电流
低档
84A
高档
42A
频率
40.0-499.9Hz连续可调
频率稳定度
定频:≤±0.01%; 调频:≤±0. 1%
动态电压瞬变范围
≤1%
负载稳压率
≤±1%
波形失真度
≤3%
功率因数
≥85%
反应时间
≤2Ms
显示精度
数位频率表
解析度0.1Hz
数位电压表
解析度0.1V
数位电流表
解析度0.01A
数位功率表
解析度0.1W
电表指示
四位数字式频率、电压、电流、功率及功率因数表
工作效率
效率高达90%,可为感性、容性、阻性任意混合负载
保护功能
过电流、过电压、过热、过载保护及警告装置
绝缘电抗
500Vdc 20MΩ以上
耐压绝缘
1800Vac/5Ma/1分钟
冷却装置
强制风扇制冷
环境
工作温度
-10℃~50℃
相对湿度
0-90%(非凝结状态)
海拔高度
1500公尺
尺寸(深*宽*高)mm
660*400*700
资料
NH-A系列变频变压电源,在产品的设计方面,采用了高频PWM,IGBT逆变功率推动及输入输出全隔离技术,使产品具有瞬时值控制及在线可调功能,具有控制精度高、波形品质好以及负载适应性强、噪音低及抗干扰能力强等特点。
可广泛应用于以下场所:
● 海外销售产品测试;
●模拟产品行销目的地(各国各地区)电网状况;
●各种产品认证的预测试;
●产品寿命测试;
●专业实验室的电源适应性试验;
●变压器、电机等绕组类产品倍频测试;
●中频测试;
模拟变频电源三进三出技术参数如下:
制作方式
SPWM/IGBT正弦波脉宽调制
输入电源
380V±10% AC
输入相数
三相 三线/四线+地线
输入频率
50/60Hz±5Hz
输出电压
低档:0~150V/0~260V 高档:0~300V/0~520
输出频率
调频:47Hz~63Hz 定频:50Hz、60Hz
电压稳定度
标准正弦波形
频率稳定度
≤1%
总谐波含量
≤2%(线性负载)(THD)
三相不平衡
可接不平衡负载
相角偏移度
平衡或对称负载120°±1° 10%不平衡负载时120°±3°
负载类型
无负载类型限制(阻性、感性、容性、整流均可)
显示相电压
四位LED 分辨率:0.1V
显示频率
四位LED 分辨率:0.1Hz
显示电流
四位LED 分辨率:0.001A/0.01A/0.1A
功率/功率因数
四位LED 分辨率:0.1W/1W/0.1KW
效率
≥85%
保护装置
过载、过流、过压、过热、短路等保护
噪声
≤65dB (1米以外)
使用环境
温度:-10℃~40℃ 湿度:10%~90%、海拔≤2000m
外形尺寸
如2表
重量
如2表
2表:
容量
输出电流
外形尺寸
重量
低档
高档
6KVA
18A
9A
500×900×680
120KG
10KVA
30A
15A
500×900×680
150KG
15KVA
46A
23A
500×900×680
200KG
20KVA
60A
30A
590×1100×800
260KG
30KVA
90A
45A
590×1100×800
300KG
45KVA
136A
68A
720×1220×1080
340KG
50KVA
150A
75A
720×1220×1080
370KG
60KVA
180A
90A
720×1220×1080
400KG
75KVA
226A
113A
720×1220×1080
500KG
90KVA
272A
136A
750×1300×1382
600KG
100KVA
303A
151A
750×1300×1382
650KG
120KVA
364A
182A
1380×1450×870
700KG
150KVA
454A
227A
1380×1450×870
900KG
180KVA
546A
273A
2100×1650×1350
1100KG
200KVA
606A
303A
2100×1650×1350
1300KG
300KVA
909A
455A
2600×1800×1550
1750KG
450KVA
1364A
682A
2600×1800×1550
2100KG
600KVA
1818A
909A
2600×2200×1850
2600KG
750KVA
2272A
1136A
2600×2200×1850
2900KG
应用问题
在工业调速传动领域中,与传统的机械调速相比,用变频电源调速有诸多优点,应用非常广泛,但由于变频电源逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频电源在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频电源为代表的电力电子装置是公用电网中最主要的谐波源之一,其对电力系统中电能质量有着重要的影响。供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种 干扰量,使电网受到“污染”,电能质量下降。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般 为2≤n≤40。
谐波产生
向公用电网注入谐波电流或在公用电网上产生谐波电压的电气设备称为谐波源。具有非线性特性的电气设备是主要的谐波源,例如带有功率电子器件的变流设备,交流控制器和电弧炉、感应炉、荧光灯、变压器等。
谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率、幅度与相角。谐波可以区分为偶次与奇次谐波。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在,奇次谐波引起的危害比偶次谐波更多更大。我国工业企业也越来越多的使用产生谐波的电气设备,例如晶闸管电路供电的直流提升机、交-交变频装置、轧钢机直流传动装置、晶闸管串级调速的风机水泵和冶炼电弧炉等。这些设备取用的电流是非正弦形的,其谐波分量使系统正弦电压产生畸变。谐波电流的量取决于谐波源设备本身的特性及其工作状况,而与电网参数无关,故可视为恒流源。 各种晶闸管电路产生的谐波次数与其电路形式有关,称为该电路的特征谐波。除特征谐波外,在三相电压不平衡,触发脉冲不对称或非稳定工作状态下,上述电路还会产生非特征谐波。进行谐波分析和计算最有意义的是特征谐波,如果5,7,11,13次等。如直流侧电流波纹较大,则5次谐波幅值将增大,其余各次谐波幅值将减少。 当电网接有多个谐波源时,由于各谐波源的同次谐波电流分量的相位不同,其和将小于各分量的算术和。 变压器激磁电流中含有3,5,7等各次谐波分量。由于变压器的原副边绕组中总有一组为角形接法,为3次谐波提供了通路,故3次谐波电流不流入电网。但当各相激磁电流不平衡时,可使3次谐波的残余分量(最多可达20%)进入电网。
谐波危害
对于电力系统来说,电力谐波的危害主要表现有以下几方面:
(1)增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益:
(2)电力谐波对输电线路的影响:
谐波电流使输电线路的电能损耗增加。当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。
(3)电力谐波对变压器的影响:
谐波电压的存在增加了变压器的磁滞损耗、涡流损耗及绝缘的电场强度,谐波电流的存在增加了铜损。对带有非对称性负荷的变压器而言,会大大增加励磁电流的谐波分量。
(4) 电力谐波对电力电容器的影响:
含有电力谐波的电压加在电容器两端时,由于电容器对电力谐波阻抗很小,谐波电流叠加在电容器的基波上,使电容器电流变大,温度升高,寿命缩短,引起电容器过负荷甚至爆炸,同时谐波还可能与电容器一起在电网中造成电力谐波谐振,使故障加剧。
(5)影响继电保护和自动装置的工作可靠性:
特别对于电磁式继电器来说,电力谐波常会引起继电保护及自动装置误动或拒动,使其动作失去选择性,可靠性降低,容易造成系统事故,严重威胁电力系统的安全运行。
(6)对通讯系统工作产生干扰:
电力线路上流过的幅值较大的奇次低频谐波电流通过磁场耦合时,会在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,甚至在极端的情况下,还会威胁着通信设备和人员的安全。
(7)对用电设备的影响:
电力谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件温度出现过热,使计算机及数据处理系统出现错误,严重甚至损害机器。
此外,电力谐波还会对测量和计量仪器的指示不准确及整流装置等产生不良影响,它已经成为当前电力系统中影响电能质量的大公害。
谐波治理
治理谐波问题,抑制辐射干扰和供电系统干扰,可采取屏蔽、隔离、接地及滤波等技术手段。治理谐波的主要措施有:加大系统短路容量;提高供电电压等级;增加变流装置的脉动数;改善系统的运行方式,设置交流滤波器等都能减小系统中的谐波成分。交流滤波器又分为无源滤波器和有源滤波器两种。有源滤波器是一种向系统注入补偿谐波电流,以抵消非线性负荷所产生的谐波电流的能动式滤波装置。它能对变化的谐波进行迅速的动态跟踪补偿,且补偿特性不受系统阻抗影响。其结构相对复杂,运行损耗较大,设备造价高;在补偿谐波的同时,也会注入新的谐波。无源滤波器(又称LC滤波器)是利用LC谐振原理,人为地造成一条串联谐振支路,为欲滤除的主要谐波提供阻抗极低的通道,使之不注入电网。LC滤波器结构简单,吸收谐波效果明显;但仅对固有频率的谐波有较好的补偿效果;且补偿特性受电网阻抗的影响很大,在特定频率下,电网阻抗和LC滤波器之间可能会发生并联谐振或者串联谐振。
无功功率补偿, 谐波治理技术是当前乃至今后相当长的时期内, 缓解电力供需矛盾, 改善供电质量的一种行之有效的手段之一, 经广泛推广应用后, 能为国家和用户带来巨大的经济效益和良好的社会效益。将变频电源产生的谐波控制在最小范围内,达到科学合理用电,抑制电网污染,提高电源质量。
区别变频器
变频电源与变频器的区别如下:
手机扫码阅读本文
本文链接:https://www.aichangjia.com/baike/1624527921.html

推荐品牌